Multilayer Dielectric Elastomer Actuators with Ion Implanted Electrodes

نویسنده

  • A. Punning
چکیده

We present the design, fabrication process and characterization of multilayer miniaturized polydimethylsiloxane (PDMS)-based dielectric elastomer diaphragm actuators. The conductive stretchable electrodes are obtained by lowenergy metal ion implantation. To increase force, decrease the required voltage, and avoid dielectric breakdown, we present here a technique to fabricate multilayer devices with embedded electrodes with complex shapes. By implanting electrodes on a partially cured PDMS film, then casting on it the next layer of PDMS, it is possible to have the compliant electrodes “molded” inside PDMS. Using custom shadow masks allows defining electrodes of any shape or size, we report sizes down to 0.1 mm. The minimal distance between independent electrodes inside the PDMS is limited solely by the breakdown voltage of PDMS and can be also as small as 0.1 mm. Using this approach, we have fabricated miniature compact devices consisting of several independent dielectric elastomer actuators on a single PDMS film. Applying different voltages to the separate actuators allows to achieve complicated movements of the whole device, e.g. to act as a 3-DOF parallel manipulator. A distinctive feature of the multi-layer actuators is that they attain similar strain with lower voltage than the single-layer actuators of the same thickness. We report on a 3 mm diameter 2-axis beam steering device combining three actuators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ion-implanted compliant and patternable electrodes for miniaturized dielectric elastomer actuators

This article presents metal ion implantation as an alternative technique to fabricate compliant electrodes for small-size dielectric elastomer actuators. When reducing the size of these actuators to below 1 cm, the ability to pattern the electrodes is added to the need for compliance. Metal ion implantation on Polydimethylsiloxane (PDMS) layers allows the creation of conductive and compliant el...

متن کامل

Mechanical characterization of a dielectric elastomer microactuator with ion-implanted electrodes

We report on the mechanical characterization and modeling of a non-prestretched dielectric elastomer diaphragm microactuator with ion-implanted electrodes under the influence of a distributed load (pressure). Thin PDMS membranes (30 μm thick, 2-3 mm diameter) were implanted on both side with gold ions by Filtered Cathodic Vacuum Arc and bonded on silicon chips with through-holes. A voltage appl...

متن کامل

Metal Ion Implanted Compliant Electrodes in Dielectric Electroactive Polymer (EAP) Membranes

One of the key factors to obtain large displacements and high efficiency with dielectric electroactive polymer (DEAPs) actuators is to have compliant electrodes. Attempts to scale DEAPs down to the mm or micrometer range have encountered major difficulties, mostly due to the challenge of micropatterning sufficiently compliant electrodes. Simply evaporating or sputtering thin metallic films on e...

متن کامل

Microfabrication and characterization of an array of dielectric elastomer actuators generating uniaxial strain to stretch individual cells

Cells regulate their behavior in response to mechanical strains. Cell cultures to study mechanotransuction are typically cm2 in area, far too large to monitor single cell response. We have developed an array of dielectric elastomer microactuators as a tool to study mechanotransduction of individual cells. The array consists of 72 100 μm × 200 μm electroactive polymer actuators which expand unia...

متن کامل

Multilayer Dielectric Elastomers for Fast, Programmable Actuation without Prestretch.

A novel method for the fabrication of dielectric elastomer actuators (DEAs) combines acrylic polymers and single wall carbon nanotube network electrodes. DEAs made using this technique do not require prestretching, have extremely thin electrodes, and can be actuated at low voltage. The method is applied to create a multimorph device with nine actuation modes based on just four inputs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011